Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Pflugers Arch ; 476(3): 337-350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38159130

RESUMO

In this study we used ivabradine (IVA), a hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker, to identify its effect on spike-wave discharges (SWDs); and aimed to determine the role of IVA on the effects of T-type calcium channel blocker NNC 55-0396, GABAA receptor agonist muscimol and antagonist bicuculline in male WAG/Rij rats. After tripolar electrodes for electrocorticogram (ECoG) recordings were placed on the WAG/Rij rats' skulls, 5, 10, and 20 mg/kg IVA were intraperitoneally administered for 7 consecutive days and ECoG recordings were obtained on days 0th, 3rd, 6th, and 7th for three hours before and after injections. While acute injection of 5, 10, and 20 mg/kg IVA did not affect the total number and the mean duration of SWDs, subacute administration (7 days) of IVA decreased the SWDs parameters 24 hours after the 7th injection. Interestingly, when IVA was administered again 24 hours after the 6th IVA injection, it increased the SWDs parameters. Western-blot analyses showed that HCN1 and HCN2 expressions decreased and HCN4 increased in the 5-month-old WAG/Rij rats compared to the 1-month-old WAG/Rij and 5-month-old native Wistar rats, while subacute IVA administration increased the levels of HCN1 and HCN2 channels, except HCN4. Subacute administration of IVA reduced the antiepileptic activity of NNC, while the proepileptic activity of muscimol and the antiepileptic activity of bicuculline were abolished. It might be suggested that subacute IVA administration reduces absence seizures by changing the HCN channel expressions in WAG/Rij rats, and this affects the T-type calcium channels and GABAA receptors.


Assuntos
Canais de Cálcio Tipo T , Epilepsia Tipo Ausência , Ratos , Animais , Masculino , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/metabolismo , Ratos Wistar , Receptores de GABA-A , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Eletroencefalografia , Anticonvulsivantes/uso terapêutico , Muscimol , Bicuculina , Bloqueadores dos Canais de Cálcio/farmacologia , Ácido gama-Aminobutírico , Modelos Animais de Doenças
2.
Mol Cell Biochem ; 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37432633

RESUMO

In our study, we aimed to create an inflammation model in endothelial and macrophage cell lines and to examine the changes in the expression of hyperpolarization activated cyclic nucleotide gated (HCN) channels at the molecular level. HUVEC and RAW cell lines were used in our study. 1 µg/mL LPS was applied to the cells. Cell media were taken 6 h later. TNF-α, IL-1, IL-2, IL-4, IL-10 concentrations were measured by ELISA method. Cell media were cross-applied to cells for 24 h after LPS. HCN1/HCN2 protein levels were determined by Western-Blot method. HCN-1/HCN-2 gene expressions were determined by qRT-PCR method. In the inflammation model, a significant increase in TNF-α, IL-1, and IL-2 levels was observed in RAW cell media compared to the control. While no significant difference was observed in IL-4 level, a significant decrease was observed in IL-10 level. While a significant increase in TNF-α level was observed in HUVEC cell medium, no difference was observed in other cytokines. In our inflammation model, an 8.44-fold increase in HCN1 gene expression was observed in HUVEC cells compared to the control group. No significant change was observed in HCN2 gene expression. 6.71-fold increase in HCN1 gene expression was observed in RAW cells compared to the control. The change in HCN2 expression was not statistically significant. In the Western-Blot analysis, a statistically significant increase in HCN1 level was observed in the LPS group in HUVEC cells compared to the control; no significant increase in HCN2 level was observed. While a statistically significant increase in HCN1 level was observed in the LPS group in RAW cells compared to the control; no significant increase in HCN2 level was observed. In immunofluorescence examination, it was observed that the level of HCN1 and HCN2 proteins in the cell membrane of HUVEC and RAW cells increased in the LPS group compared to the control group. While HCN1 gene/protein levels were increased in RAW and HUVEC cells in the inflammation model, no significant change was observed in HCN2 gene/protein levels. Our data suggest that the HCN1 subtype is dominant in endothelium and macrophages and may play a critical role in inflammation.

3.
Braz. J. Pharm. Sci. (Online) ; 59: e201085, 2023. graf
Artigo em Inglês | LILACS | ID: biblio-1429968

RESUMO

Abstract Nitric oxide (NO) is an abundant mediator which is demonstrated to be involved in pruritus. Assuming that the increased NO also mediates chloroquine-induced pruritus, which is a frequent complication seen in the chronic chloroquine treatment, the current study aimed to investigate the effect of quercetin and the role of NO in chloroquine-induced pruritus in C57BL/6 mice. Model was created with subcutaneous chloroquine (400µg/site) injection to the nape of the mice. Effect of quercetin and role of NO were investigated with administration of quercetin, and co-administration with L-NAME, 7-NI and L-arginine before chloroquine injection. Locomotor activity was assessed by activity cage and number of the scratching bouts after chloroquine injection was recorded for 30 minutes. Our results show that quercetin significantly reduced scratching bouts at the doses of 10, 20, 40 and 80 mg/kg. Locomotor activity was decreased at the 40 and 80 mg/kg doses of quercetin. Additionally, decrease of the number of scratching bouts by quercetin prevented by L-arginine treatment, while L-NAME and 7-NI enhanced the anti-pruritic effect of sub-effective doses of quercetin. Therefore, our study demonstrated that acute injection of quercetin significantly diminished chloroquine-induced scratching behavior, and this effect is partly mediated by inhibition of neuronal nitric oxide synthase enzyme.


Assuntos
Animais , Masculino , Camundongos , Prurido/induzido quimicamente , Quercetina/efeitos adversos , Cloroquina/administração & dosagem , Óxido Nítrico/agonistas , Atividade Motora
4.
Immunopharmacol Immunotoxicol ; 44(3): 447-455, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35291899

RESUMO

AIM: Parkinson's disease (PD) is a chronic neurodegenerative disorder related with several genetic and epigenetic factors. In the context of epigenetic factors, histone acetylation is one of the most associated mechanisms with Parkinson's disease progression. This study investigates the effects of the increased histone acetylation on antigen presentation in microglial cells which were induced by pre-formed fibrils of α-synuclein (pFF α-synuclein). METHODS: Parkinson's disease model was created with pFF α-synuclein administration to the BV-2 microglial cells. BV-2 cells were co-treated with CUDC-907 and TMP-195 to increase histone acetylation in the presence of α-synuclein. Antigen representation was evaluated by determining expression levels of major histocompatibility complex-II (MHC-II) and class-II major histocompatibility complex (CIITA). RESULTS: Our results showed that pFF α-synuclein significantly increased MHC-II expression, and that effect was most severe at 6 h of administration of α-synuclein. Increasing histone acetylation via CUDC-907 and TMP-195 enhanced MHC-II levels expression, which was more severe in CUDC-907. Additionally, CIITA expression levels were significantly increased with pFF α-synuclein administration and intensified with the co-treatment of CUDC-907 and TMP-195. Furthermore, pFF α-synuclein caused a time-dependent increase in the IFN-gamma (IFN-É£) and interleukin-16(IL-16) levels, and that increase was potentiated with CUDC-907 and TMP-195. CONCLUSION: Changes in MHC-II and CIITA expression indicate that histone acetylation increases the antigen presentation properties of microglial cells after pFF α-synuclein or histone deacetylase inhibitor (HDACi) administration. Our results show that microglial antigen presentation might have an essential role in the pathology of Parkinson's disease, and α-synuclein likely to play a primary role in this mechanism.


Assuntos
Proteínas Nucleares/metabolismo , Doença de Parkinson , Transativadores/metabolismo , alfa-Sinucleína , Animais , Apresentação de Antígeno , Histona Desacetilases/metabolismo , Histonas/metabolismo , Histonas/farmacologia , Camundongos , Microglia/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
5.
Immunopharmacol Immunotoxicol ; 44(3): 367-372, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35253588

RESUMO

Background: Psoriasis is a common skin disorder related to inflammation and immune response. However, many treatment modalities are present in the clinics, and drug conformity halts chronic treatment. Therefore, novel treatment options are still needed. In this study, the possible protective effect of asiatic acid is one of the active compounds present in Centella Asiatica, was investigated in the imiquimod-induced psoriasis murine model.Methods:Imiquimod (62.5 mg) was administered dorsal skin of the mice for 6 days. Animals were co-treated with low-dose (25 mg/kg, p.o.) and high-dose (100 mg/kg, p.o.) asiatic acid. The dorsal skin of the animals was daily scored for erythema, thickness, and scaling. At the end of the treatments, serum levels of IL-17A and IL-23 were determined by ELISA. Additionally, the dorsal skins of animals were histopathologically evaluated.Results: Asiatic acid (high-dose) prevented imiquimod-induced skin lesions and protected dermal integrity in addition decreasing mast cell infiltration due to the imiquimod. Furthermore, asiatic acid (high-dose) suppressed the imiquimod-induced increase in serum levels of IL-17A and IL-23.Conclusion: These results indicate that asiatic acid showed an anti-psoriatic effect in the imiquimod-induced psoriasis model via mediating IL-17A and IL-23 pathways. Because wound healing properties of asiatic acid are described, further investigations should be carried out to understand deeper mechanisms and possible use in dermatological pathologies such as psoriasis.


Assuntos
Interleucina-17 , Psoríase , Animais , Modelos Animais de Doenças , Imiquimode/efeitos adversos , Interleucina-17/metabolismo , Interleucina-23 , Camundongos , Camundongos Endogâmicos BALB C , Triterpenos Pentacíclicos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Pele
6.
J Recept Signal Transduct Res ; 42(5): 486-494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35133924

RESUMO

Bipolar disorder (BD) is a severe mental illness characterized by aberrant mood changes between hypomania and mania or mixed states and depression. Metabolic changes also accompany disease progression and cause significant morbidity. Symptomatic treatment options are available, but asymptomatic patients and poor drug responders are significant problems. Based on the most common pharmacological agent that is used in the treatment, lithium and its main mechanisms of action, oxidative stress, and glycogen synthase kinase-3ß (GSK-3ß) signaling are extensively investigated. However, knowledge about the effects of compounds that positively affect oxidative stress and GSK-3ß signaling, such as glucagon-like peptide-1 (GLP-1) mimetics, liraglutide, is still missing. Therefore, in this study, we aimed to investigate the effects of liraglutide on the ouabain-induced bipolar disease model in rats. After intracerebroventricular single dose ouabain administration, animals were treated with 100, 200, and 400 µg/kg liraglutide (s.c.) and valproic acid (200 mg/kg, i.p.) for 10 d. The locomotion and depressive states of animals were assessed by an open field, forced swimming test, and sucrose preference tests. Serum total antioxidant (TAS) and oxidant states (TOS) and glutathione, malonyl dialdehyde (MDA) levels in the brain tissue were determined. GSK-3ß phosphorylation was evaluated by western blotting. Our results demonstrated that liraglutide attenuated ouabain-induced hyperlocomotion and depressive state. Additionally, liraglutide prevented oxidative stress after ouabain administration. Decreased GSK-3ß phosphorylation due to the ouabain insult was alleviated by liraglutide treatment. These findings indicate that the manic and depressive-like behaviors are ameliorated by liraglutide, which exerted antioxidant action, possibly improving GSK-3ß phosphorylation.


Assuntos
Mania , Ouabaína , Animais , Antioxidantes , Peptídeo 1 Semelhante ao Glucagon , Glutationa , Glicogênio Sintase Quinase 3 beta , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Lítio , Oxidantes , Ratos , Sacarose , Ácido Valproico
7.
Immunopharmacol Immunotoxicol ; 44(2): 168-177, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35021949

RESUMO

OBJECTIVE: Endoplasmic reticulum stress (ERS) and neuroinflammation are triggers for neurodegenerative disorders. Salubrinal is a selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phosphorylated eukaryotic initiation factor-2α (eIF2α), the key crucial pathway in the ERS. Therefore, this study assessed the effects of inhibition of the ERS with salubrinal in the intranigral hemi-Parkinson disease (PD) model. MATERIALS AND METHODS: Animals were treated with salubrinal for one week after the PD model was created by intranigral lipopolysaccharide (LPS) administration. Apomorphine-induced rotation, rotarod, cylinder, and pole tests were performed to evaluate behavioral changes. Proinflammatory cytokines and the expression level of the dual specificity protein phosphatase 2 (DUSP2), PP1, and p-eIF2α were evaluated. Nigral expression of inducible nitric oxide synthase (iNOS), nuclear factor kappaB (Nf-κB), and cyclooxygenase (COX)-2 was determined. Finally, tyrosine hydroxylase and caspase-3/ caspase-9 expressions were assessed by immunohistochemistry. RESULTS: Salubrinal reduced the motor impairments and dopamine-related behavioral deficiencies caused by the LPS. Salubrinal attenuated the LPS-induced increased levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α, and salubrinal rescued the loss of TH expression and dopamine levels and prevented the caspase-3/9 increase in the substantial nigra (SN). LPS potently increased iNOS, Nf-κB, and COX-2 expression, but this effect was reduced after salubrinal treatment. Additionally, salubrinal attenuated the LPS-induced PP1 and DUSP2 increase. CONCLUSION: Our results reveal that salubrinal is attenuating several inflammatory mediators and thereby decreased the inflammatory effects of LPS in the neurons of the SN. Together this results in increased cellular survival and maintained integrity of SN. Taken together our data show the beneficial effects of inhibition of ERS to restrict neuroinflammatory progression and neuronal loss in a PD model.


Assuntos
Lipopolissacarídeos , Doença de Parkinson , Animais , Cinamatos , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo , Tioureia/análogos & derivados
8.
Asian Biomed (Res Rev News) ; 16(2): 71-78, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37551286

RESUMO

Background: An association between dysregulated glucose levels in patients with diabetes mellitus and detrimental effects on the central nervous system, particularly in Alzheimer disease, has been recognized. Atorvastatin treatment has improved memory and cognition in some patients with diabetes mellitus and Alzheimer disease. Objectives: To determine possible neuroprotective effects of atorvastatin on memory and cognition by measuring changes in an adverse stimulus avoidance learning deficit induced by alloxan in a murine model of diabetes mellitus and impaired memory and cognition. Methods: We administered 150 mg/kg and 100 mg/kg alloxan in saline (intraperitoneally, i.p.) at a 48 h interval to produce a model of diabetes mellitus in male BALB/c mice. An oral glucose tolerance test (OGTT) was used to assess blood glucose regulation. After demonstrating hyperglycemia in mice (n = 7 per group) we administered vehicle (saline, i.p.), atorvastatin (10 mg/kg, i.p.), or liraglutide (200 µg/kg, i.p.) for 28 d except for those in a negative control group, which were given saline instead of alloxan, and a group administered atorvastatin alone, which were given saline instead of alloxan followed by atorvastatin (10 mg/kg, i.p.) for 28 d. Locomotor activity was measured 24 h after the final drug treatments, and subsequently their learned behavioral response to an adverse electrical stimulus to their plantar paw surface in a dark compartment was measured using a passive avoidance apparatus (Ugo Basile) in a model of impaired memory and cognition associated with Alzheimer disease. To determine any deficit in their learned avoidance of the adverse stimulus, we measured the initial latency or time mice spent in an illuminated white compartment before entering the dark compartment in the learning trial, and on the day after learning to avoid the adverse stimulus, the retention period latency in the light compartment and time spent in the dark compartment. Results: Atorvastatin alone produced no significant change in blood glucose levels (F4,10 = 0.80, P = 0.55) within 2 h. Liraglutide decreased blood glucose levels after 0.5 h (F4,10 = 11.7, P < 0.001). We found no significant change in locomotor activity in any group. In mice with alloxan-induced diabetes, atorvastatin significantly attenuated the decreased avoidance associated with the diabetes (F4,30 = 38.0, P = 0.02) and liraglutide also significantly attenuated the decreased avoidance (F4,30 = 38.0, P < 0.001). Atorvastatin alone had no significant effect on the adversive learned response compared with vehicle treatment (F4,30 = 38.0, P > 0.05). Atorvastatin significantly decreased the time mice with alloxan-induced diabetes spent in the dark compartment compared with mice in the diabetes group without atorvastatin treatment (F4,30 = 53.9, P = 0.046). Liraglutide also significantly reduced the time mice with alloxan-induced diabetes spent in the dark compartment compared with vehicle-treated mice with alloxan-induced diabetes (F4,30 = 53.9, P < 0.001). Atorvastatin treatment alone had no significant effect on the time mice spent in dark compartment compared with the control group (F4,30 = 53.9, P > 0.05). Conclusion: Atorvastatin significantly attenuated the adverse stimulus avoidance learning deficit in the alloxan-induced murine model of diabetes suggesting decreased impairment of memory and cognition.

9.
Cureus ; 14(12): e32428, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36644097

RESUMO

INTRODUCTION: Epigenetics has shown promising results for understanding the different behaviors of microglia under the context of neuroinflammation. However, to our knowledge, the results of this complex mechanism with novel pharmacological agents such as histone deacetylase inhibitors (HDACis) are still missing. In this study, we aimed to investigate the effects of suberoylanilide hydroxamic acid (SAHA), a pan-HDACi, on the lipopolysaccharide (LPS)-induced neuroinflammation model in the N9 microglial cells. METHODS: Microglial cells were treated with SAHA (0.25, 0.5, 1.0, 1.25, 1.5 µM) and LPS (100 ng/mL) for 24 hours. Then, levels of the pro/anti-inflammatory cytokines interleukin-1 beta (IL-1ß), IL-6, tumor necrosis factor alpha (TNF-α), and IL-10 were determined by the enzyme-linked immunosorbent assay. The total cellular HDAC activity was determined by colorimetric analysis. Additionally, the expression levels of nuclear factor kappa-B (NF-κB) were quantified via western blotting. RESULTS: SAHA (1.0 and 1.25 µM) attenuated the LPS-induced inflammatory response of microglial cells via decreasing NF-κB expression and pro-inflammatory cytokines (IL-1ß, IL-6, TNF-α) in the N9 microglial cells. Moreover, SAHA treatment improved IL-10 levels and prevented the LPS-induced increase in the HDAC activity in the microglial cells. CONCLUSION: Our results suggest SAHA attenuates the LPS-induced inflammatory response in the N9 microglial cells, and regulation of histone acetylation with HDACis might be a rational approach for the treatment of neuroinflammation.

10.
J Recept Signal Transduct Res ; 42(4): 338-348, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34304690

RESUMO

Bipolar disorder (BD) is a multifactorial chronic and refractory disease characterized by manic, depressive, and mixed mood episodes. Although epidemiological, and pathophysiological studies demonstrated a strong correlation between bipolar disorder and oxidative stress, precise etiology is still missing. Recent studies suggested the possible role of transient receptor potential channels (TRP) in the BD but, current knowledge is limited. Therefore, the current study investigates the possible role of TRPV1 in the ouabain-induced model of BD. The model was created with intracerebroventricular single dose ouabain (10-3 M) administration. Animals were treated with capsaicin, capsazepine, and lithium for seven days. Mania and depressive-like states were investigated with open-field, sucrose preference, and elevated plus maze tests. Oxidative stress was assessed by measuring total antioxidant and oxidant states, spectrophotometrically. The phosphorylation Glycogen synthase kinase-3ß (GSK-3ß) evaluated by western blotting. Our results demonstrated that capsaicin dose-dependently inhibited the ouabain-induced hyperlocomotion and depression. Although capsazepine exacerbated behavioral impairment, it did not show a significant effect on the antioxidant and oxidant states, and the effects of capsazepine on behaviors were abolished by combination with capsaicin. Additionally, capsaicin potently prevented the ouabain-induced decrease in GSK-3ß phosphorylation. In contrast, capsazepine potentiated ouabain-induced decrease in GSK-3ß phosphorylation and combination with capsaicin, suppressed the effect of capsazepine on GSK-3ß phosphorylation. The effects of TRPV1 activation on oxidative stress and mania-like behaviors in the ouabain-induced BD model might be regulated by GSK-3ß phosphorylation.


Assuntos
Transtorno Bipolar , Animais , Antioxidantes/farmacologia , Transtorno Bipolar/induzido quimicamente , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Capsaicina/farmacologia , Capsaicina/uso terapêutico , Glicogênio Sintase Quinase 3 beta/genética , Mania , Ouabaína/farmacologia , Oxidantes , Estresse Oxidativo
11.
Braz. J. Pharm. Sci. (Online) ; 58: e20942, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420449

RESUMO

Abstract In the last decades, ferroptosis and its relationship with Parkinson's disease have gained significant attention. Compounds that affect ferroptosis and iron-dependent pathways in particular, have possible candidates for study in this context.Sinapic acid is an iron-chelator and high antioxidant bioactive phenolic acid. Its neuroprotective action, due to the antioxidant capacity, has been shown in several experimental models.However, the relationship between iron and antioxidant actions is still misunderstood and therefore, in the current study, we tried to investigate the effects of sinapic acid in rotenone-induced Parkinson's disease with the aspect of ferroptosis and iron-dependent alterations.The Parkinson's disease model was induced by a single dose intrastriatal and intrategmental rotenone (5µg/µl) injection.Sinapic acid (30mg/ kg) was orally administered during a 28-day period after the Parkinson's disease model was validated.Our results demonstrated that sinapic acid treatment attenuated rotenone-induced increase of serum transferrin and iron levels.Furthermore, sinapic acid inhibited rotenone-induced heme oxygenase-1(HO-1) increase and decrease of glutathione peroxidase-4 (GPx-4) levels in brain tissue. Also, sinapic acid treatment decreased motor impairment, likely as a result of the ameliorative effects on the tyrosine hydroxylase immunoreactivity loss after the rotenone insult.Our study suggests that the iron regulatory role of sinapic acid possibly plays a role in the protective effect on rotenone-induced neuronal damage.


Assuntos
Animais , Masculino , Ratos , Rotenona/efeitos adversos , Fármacos Neuroprotetores/agonistas , Ferro/efeitos adversos , Ferroptose
12.
Immunopharmacol Immunotoxicol ; 43(6): 790-798, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34618622

RESUMO

AIM: Demyelination and subsequent remyelination are well-known mechanisms in multiple sclerosis (MS) pathology. Current research mainly focused on preventing demyelination or regulating the peripheral immune system to protect further damage to the central nervous system. However, information about another essential mechanism, remyelination, and its balance of the immune response within the central nervous system's boundaries is still limited. MATERIALS AND METHODS: In this study, we tried to demonstrate the effect of the recently introduced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) inhibitor, tofacitinib, on remyelination.Demyelination was induced by 6-week cuprizone administration, followed by 2-week tofacitinib (10, 30, and 100 mg/kg) treatment. RESULTS: At the functional level, tofacitinib improved cuprizone-induced decline in motor coordination and muscle strength, which were assessed by rotarod and hanging wire tests. Tofacitinib also showed anti-inflammatory effect by alleviating the cuprizone-induced increase in the central levels of interferon-γ (IFN-γ), interleukin (IL)-6, IL-1ß, and tumor necrosis alpha (TNF-α). Furthermore, tofacitinib also suppressed the cuprizone-induced increase in matrix metalloproteinases (MMP)-9 and MMP-2 levels. Additionally, cuprizone-induced loss of myelin integrity and myelin basic protein expression was inhibited by tofacitinib. At the molecular level, we also assessed phosphorylation of STAT-3 and STAT-5, and our data indicates tofacitinib suppressed cuprizone-induced phosphorylation in those proteins. CONCLUSION: Our study highlights JAK/STAT inhibition provides beneficial effects on remyelination via inhibition of inflammatory cascade.


Assuntos
Quelantes/toxicidade , Cuprizona/toxicidade , Inibidores de Janus Quinases/farmacologia , Bainha de Mielina/efeitos dos fármacos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Remielinização/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Força Muscular/efeitos dos fármacos , Força Muscular/fisiologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Remielinização/fisiologia
13.
Neurosci Lett ; 755: 135908, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33892001

RESUMO

Decades after identifying cannabinoids and their beneficial effects on Parkinson's disease (PD), many gaps are still missing. Although, CB2-dependent actions have been shown as underlying positive effects of cannabinoid treatment, in recent years, another receptor of cannabinoids, CB1, emerged as a valuable player in cannabinoid-induced neuroprotection. Remarkably, the effects of CB1 are mainly related to immune cells in the CNS, microglia, and astrocytes. However, oxidative stress, α-syn accumulation, and immune disbalance are essential aspects of both neurons and glial cells. Therefore, in this study, we investigated the effects of the CB1 on both α-syn and rotenone-treated SH-SY5Y and C8-D1A cells. ACEA and AM-251 were used as CB1 agonists and antagonists. Cell viability, IL-1ß, IL-6, TNF-α levels, and CD200 expressions were determined in culture mediums. Our results demonstrated that preformed fibril form (pFF) of α-syn did not cause any significant change in SH-SY5Y cells compared to C8-D1A cells. Rotenone significantly increased the expression of IL-1ß, IL-6, and TNF-α levels in both cells. pFF α-syn and rotenone treatment caused a decrease in CD200 expression. Surprisingly both ACEA and AM-251 alleviated rotenone-induced increase in cytokine levels in both cell lines. Although ACEA prevented pFF α-syn induced increase in cytokine levels and decrease in CD200 expression in C8-D1A cells, AM-251 failed to affect CD200 expression levels. Additionally, ACEA + AM-251 abolished the protective effects of both ACEA and AM-251 against rotenone and α-syn insults in both cell lines. The current study suggests that cannabinoid receptor agonism alleviates rotenone and α-syn-dependent inflammation in neurons and astrocytes.


Assuntos
Antígenos CD/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Rotenona/toxicidade , alfa-Sinucleína/toxicidade , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , Inseticidas/toxicidade , Camundongos , Estresse Oxidativo/fisiologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , alfa-Sinucleína/farmacologia
14.
J Recept Signal Transduct Res ; 41(3): 209-216, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33401964

RESUMO

Microglial antigen generation (MAG) is an essential process in regulating disease states and homeostasis of the central nervous system. MAG is considered as responsible autoimmune mechanism in neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's diseases. Neuroprotective and regulator effects of cannabinoid receptors on these disease states and modulation with pharmacological agents are urgent subjects in recent decades. Although different aspects of microglial immune response have been investigated, specific effects of these receptor subtypes in the MAG are still unclear. Therefore, in the current study, we have investigated the effects of CB1 and CB2 receptors on antigen generation by investigating MHC-II and its master regulator CIITA by specific cannabinoid agents (ACEA, AM-251, CP 55,940, and SR144528) in the LPS-induced BV-2 cells. Additionally, the effects of drug treatments on inflammatory status were measured by determining IL-1ß, IL-6, and TNF-α levels. LPS-induced increase in MHC-II and CIITA expression was inhibited by specific CB1 agonist, ACEA, and nonselective cannabinoid agonist CP 55,940. A combination with specific CB1 antagonist AM-251 prevented these inhibitory effects of ACEA and CP 55,940 on both MHC-II and CIITA expression. Although specific CB2 antagonist, SR144528, also prevented the inhibitory effect of CP 55,940 on MHC-II, it did not affect CIITA expression. LPS-induced IL-1ß, IL-6, and TNF-α increase both attenuated with CP 55,940 and ACEA treatments. Although both selective cannabinoid antagonists inhibited this effect, preventive effects were more dominant on CB1 receptors. Our results demonstrated that CB1 receptors majorly mediates LPS-induced MHC-II and its regulator CIITA expression in microglial cells.


Assuntos
Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Canabinoides/metabolismo , Transativadores/metabolismo , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/efeitos dos fármacos
15.
Neurochem Res ; 46(3): 513-522, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33247801

RESUMO

Oxidative stress is considered one of the mechanisms responsible for neurodegenerative diseases, especially for Parkinson's disease. Since oxidative stress causes pathological changes in neuronal structures antioxidant compounds gained significant attention the last decades. Although several antioxidant compounds showed neuroprotective actions in Parkinson's disease models, only a few of them demonstrated protective effects against loss of striatal dopaminergic neurons. Idebenone is an analog of the well-known antioxidant compound coenzyme Q10 (CoQ10). Clinical safety of idebenone is well described, and due to its high antioxidant capacity currently used to treat Freidrich's ataxia and Alzheimer's disease. Like Parkinson's disease, these diseases are characterized by oxidative stress and impaired mitochondrial balance in neurons. However, knowledge about the effects of idebenone on Parkinson's disease is limited. Therefore, in this study we aimed to investigate and delineate the possible effects of idebenone in rotenone-induced Parkinson's disease models. Idebenone (200 mg/kg, p.o.) inhibited the decrease of striatal expression of NAD(P)H dehydrogenase[quinone]-1, which is an essential element for mitochondrial respiration. Idebenone decreased the striatal levels of the lipid peroxidation products and increased the expression of glutathione peroxidase-4 (GPx-4), which is primarily known for lipid peroxidation and ferroptosis. Furthermore, idebenone mitigated motor impairment and increased tyrosine hydroxylase-positive neuron survival. Together our results thus indicate that that idebenone has protective effects against a rotenone insult with pleiotropic actions on the cellular oxidative enzymes and lipid peroxidation.


Assuntos
Antioxidantes/uso terapêutico , Peroxidação de Lipídeos/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson Secundária/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Locomoção/efeitos dos fármacos , Masculino , Teste de Campo Aberto/efeitos dos fármacos , Doença de Parkinson Secundária/induzido quimicamente , Ratos Sprague-Dawley , Rotenona , Ubiquinona/uso terapêutico
16.
Metab Brain Dis ; 36(2): 339-349, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33165734

RESUMO

Neurotoxicity caused by cisplatin is a major obstacle during chemotherapy. Oxidative stress and inflammation are considered the primary mechanism behind neuronal damage which affects the continuing chemotherapy regimen. Agomelatine was recently described as a neuroprotective compound against toxic insults in the nervous systems. It is an analog of the well-known antioxidant and anti-inflammatory compound melatonin and currently used for depression and sleep disturbances. In the current study, we investigated the possible neuroprotective role of agomelatine against cisplatin-induced oxidative, inflammatory, and behavioral alterations in male rats. Our results show that agomelatine prevented cisplatin-induced neurotoxicity in the HT-22 mouse hippocampal neuronal cell line. Additionally, agomelatine treatment inhibited cisplatin-induced behavioral deficits and neuronal integrity in vivo. For the evaluation of the effect of agomelatine on oxidative stress and inflammation, GSH, MDA, TNF, and IL-6 levels were analyzed in HT-22 cells and hippocampal tissues. Agomelatine significantly attenuated oxidative stress and inflammation due to the cisplatin insult in vitro and in vivo. Also, agomelatine treatment ameliorated the neuronal pathology in the hippocampus, which is strongly related to cognition and memory. Taken together, our results indicate that in males, the neuroprotective effect of agomelatine is mediated through its antioxidant and anti-inflammatory actions abrogating functional deficits.


Assuntos
Acetamidas , Antineoplásicos , Cisplatino , Hipocampo , Neuroproteção , Fármacos Neuroprotetores , Animais , Camundongos , Acetamidas/farmacologia , Antineoplásicos/toxicidade , Antioxidantes/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Linhagem Celular , Cisplatino/toxicidade , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos
17.
Biomarkers ; 26(2): 114-118, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33284049

RESUMO

INTRODUCTION: Coronavirus disease-2019 (COVID-19) with lung involvement frequently causes morbidity and mortality. Advanced age appears to be the most important risk factor. The receptor for advanced glycation end-product (RAGE) pathway is considered to play important roles in the physiological aging and pathogenesis of lung diseases. This study aimed to investigate the possible relationship between COVID-19 and RAGE pathway. MATERIALS AND METHODS: This study included 23 asymptomatic patients and 35 patients with lung involvement who were diagnosed with COVID-19 as well as 22 healthy volunteers. Lung involvement was determined using computed tomography. Serum soluble-RAGE (sRAGE) levels were determined using enzyme-linked immunosorbent assay. RESULTS: The sRAGE levels were significantly higher in the asymptomatic group than in the control group. Age, fibrinogen, C-reactive protein, and ferritin levels were higher and the sRAGE level was lower in the patients with lung involvement than in the asymptomatic patients. CONCLUSIONS: In this study, patients with high sRAGE levels were younger and had asymptomatic COVID-19. Patients with low sRAGE levels were elderly patients with lung involvement, which indicates that the RAGE pathway plays an important role in the aggravation of COVID-19.


Assuntos
Antígenos de Neoplasias/metabolismo , COVID-19/fisiopatologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Adulto , Idoso , Envelhecimento , COVID-19/complicações , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Pulmão/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico por imagem , Pneumonia/etiologia , Tomografia Computadorizada por Raios X
18.
Toxicol Ind Health ; 37(1): 23-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33300458

RESUMO

Rotenone is an industrial and environmental toxicant that has been strongly associated with neurodegeneration. It is clear that rotenone induces inflammatory and oxidative stress; however, information on the role of histone acetylation in neurotoxicity is limited. Epigenetic alterations, neuroinflammation, and oxidative stress play a role in the progression of neurodegeneration and can be caused by exposure to environmental chemicals, such as rotenone. Histone modifications, such as methylation and acetylation, play an important role in mediating epigenetic changes. Therefore, we here investigated the effects of histone acetylation on rotenone-induced inflammation and oxidative stress in both primary mouse microglia and hippocampal HT-22 cells using the pan-histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA). Our results showed that SAHA suppressed the inflammatory response by decreasing nuclear factor kappa B and inducible nitric oxide synthase expression. Additionally, SAHA inhibited the rotenone-induced elevation of interleukin 6 and tumor necrosis factor α levels in both cell lines. Furthermore, SAHA improved the rotenone-induced antioxidant status by mitigating the decrease in cellular glutathione levels. Additionally, SAHA prevented the rotenone-induced increase in the HDAC activity in microglial and hippocampal HT-22 cells. Together, our results showed that SAHA reduced rotenone-induced inflammatory and oxidative stress, suggesting a role for histone deacetylation in environmental-related neurotoxicity.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Mediadores da Inflamação/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Rotenona/toxicidade , Vorinostat/farmacologia , Animais , Sobrevivência Celular , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos
19.
Mol Biol Rep ; 47(11): 8987-8995, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33136246

RESUMO

Cancer treatment is a complex process due to the several encountered obstacles during therapy, such as metastasis, angiogenesis, and drug resistance. The methylation status of elements that are thought to play crucial roles in these mechanisms is considered valuable targets. Matrix metalloproteinase-3 (MMP-3), one of the possible targets, is a well-known endopeptidase and secreted by several types of cancer cells. Paclitaxel, cisplatin, and methotrexate are frequently used for several malignancies, individually or in combination. Therefore, the aims of this study is that demonstration of possible effects of different doses of single or jointly application of these agents with maintaining their antiproliferative activity in clinically relevant cell lines, as well as revealing epigenetic results of this pharmacological alteration with exploring promoter methylation status of the MMP-3 gene. Cell viability was determined with Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Further methylation-specific PCR (MSP) experiments for determining the promoter methylation status of MMP-3 were performed according to the obtained IC50 values of the drug treatments. The MMP-3 promoter methylation status was analayzed with MSP and determined with agarose gel electrophoresis. As a result, methotrexate and paclitaxel treatment significantly methylated the MMP-3 promoter; however, cisplatin caused MMP-3 promoter unmethylation in MCF-7 and SH-SY5Y cells. Our study indicates that decreasing the dose of clinically prevalent chemotherapeutic agents while maintaining the same tumor-killing potency might be a rational strategy for treatment. In addition to avoiding adverse effects of these compounds, decreasing treatment doses will bring substantial benefits for patient life-quality.


Assuntos
Cisplatino/farmacologia , Metilação de DNA/efeitos dos fármacos , Metaloproteinase 3 da Matriz/genética , Metotrexato/farmacologia , Paclitaxel/farmacologia , Regiões Promotoras Genéticas/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Células MCF-7
20.
Turk J Med Sci ; 50(8): 1786-1791, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-32979900

RESUMO

Background/aim: It is claimed that aberrant immune response has a more important role than the cytopathic effect of the virus in the morbidity and mortality of the coronavirus disease 2019 (COVID-19). We aimed to investigate the possible roles of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/Fn14 pathway and leukotrienes (LT) in uncontrolled immune response that occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Materials and methods: This study included 25 asymptomatic patients and 35 patients with lung involvement who were diagnosed with COVID-19 as well as 22 healthy volunteers. Lung involvement was determined using computed-tomography. Serum TWEAK, LTE4, and prostaglandin F2α (PGF2α) levels were determined. Results: Compared with the healthy control group, TWEAK, LTE4, and PGF2α levels were higher in the group of SARS-CoV-2 infection without lung involvement. In the group of SARS-CoV-2 infection with lung involvement, age, fibrinogen, sedimentation, C-reactive protein and ferritin, TWEAK, LTE4, and PGF2α levels were higher, and lymphocyte levels were lower compared with the asymptomatic group. Conclusions: In the study, TWEAK and LTE4 levels increased in cases with COVID-19. These results support that TWEAK/Fn14 pathway and LT may involved in the pathology of aberrant immune response against SARS-CoV-2. Inhibition of each of these pathways may be a potential target in the treatment of COVID-19.


Assuntos
COVID-19 , Citocina TWEAK/sangue , Dinoprosta/sangue , Leucotrieno E4/sangue , Pulmão/diagnóstico por imagem , COVID-19/diagnóstico , COVID-19/imunologia , Correlação de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Receptor de TWEAK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...